Controlling RNA in living cells


An illustration of RNA. Illustration: Christine Daniloff/MIT

An illustration of RNA.
Illustration: Christine Daniloff/MIT

Controlling RNA in living cells

Modular, programmable proteins can be used to track or manipulate gene expression.

Source: [Anne Trafton | MIT News Office, April 25, 2016]

MIT researchers have devised a new set of proteins that can be customized to bind arbitrary RNA sequences, making it possible to image RNA inside living cells, monitor what a particular RNA strand is doing, and even control RNA activity.

The new strategy is based on human RNA-binding proteins that normally help guide embryonic development. The research team adapted the proteins so that they can be easily targeted to desired RNA sequences.

“You could use these proteins to do measurements of RNA generation, for example, or of the translation of RNA to proteins,” says Edward Boyden, an associate professor of biological engineering and brain and cognitive sciences at the MIT Media Lab. “This could have broad utility throughout biology and bioengineering.”

Unlike previous efforts to control RNA with proteins, the new MIT system consists of modular components, which the researchers believe will make it easier to perform a wide variety of RNA manipulations.

“Modularity is one of the core design principles of engineering. If you can make things out of repeatable parts, you don’t have to agonize over the design. You simply build things out of predictable, linkable units,” says Boyden, who is also a member of MIT’s McGovern Institute for Brain Research.

Boyden is the senior author of a paper describing the new system in the Proceedings of the National Academy of Sciences. The paper’s lead authors are postdoc Katarzyna Adamala and grad student Daniel Martin-Alarcon.

Modular code

Living cells contain many types of RNA that perform different roles. One of the best known varieties is messenger RNA (mRNA), which is copied from DNA and carries protein-coding information to cell structures called ribosomes, where mRNA directs protein assembly in a process called translation. Monitoring mRNA could tell scientists a great deal about which genes are being expressed in a cell, and tweaking the translation of mRNA would allow them to alter gene expression without having to modify the cell’s DNA.

To achieve this, the MIT team set out to adapt naturally occurring proteins called Pumilio homology domains. These RNA-binding proteins include sequences of amino acids that bind to one of the ribonucleotide bases or “letters” that make up RNA sequences — adenine (A), thymine (T), uracil (U), and guanine (G).

Read more…