Simons Center for the Social Brain
  • Our Research
    • Impact
      • Reaching beyond MIT
    • Targeted Projects
    • Postdoctoral Fellowship Research
    • Seed Grants
    • Technology Hubs
  • Our People
    • Investigators
    • Postdoctoral Fellows
      • Postdoctoral Fellows
      • Simons Postdoctoral Fellows: In their own words
    • Simons Center MSRP Summer students
  • Apply For Funding
    • Targeted Project Funding
    • Postdoctoral Fellowship Funding
  • Events
    • SCSB Events Overview
    • Colloquium Series
    • Lunch Series
    • UnrulyArt Program
    • Special Events
    • Past Events
      • Past Colloquium Series Speakers
      • Past Lunch Series Speakers
      • Past Special Events
  • News
    • SCSB Newsletters
  • Our Values
  • Support Us
    • Support Our Research
    • Participate in Research
  • Contact Us

Reliability of Sensory-Evoked Activity in Autism

Reliability of Sensory-Evoked Activity in Autism
David Heeger, Ph.D., Professor of Psychology and Neural Science, New York University
10/22/2014

Autism has been described as a disorder of general neural processing, but the particular processing characteristics that might be abnormal in autism have mostly remained obscure. I will present evidence of one such characteristic: poor evoked response reliability. We compared cortical response amplitude and reliability (consistency across trials) in visual, auditory, and somatosensory cortices of high-functioning individuals with autism and controls. Mean response amplitudes were statistically indistinguishable across groups, yet trial-by-trial response reliability was significantly weaker in autism, yielding smaller signal-to-noise ratios in all sensory systems. Response reliability differences were evident only in evoked cortical responses and not in ongoing resting-state activity. These findings reveal that abnormally unreliable cortical responses, even to elementary nonsocial sensory stimuli, may represent a fundamental physiological alteration of neural processing in autism. The results motivate a critical expansion of autism research to determine whether (and how) basic neural processing properties such as reliability, plasticity, and adaptation/ habituation are altered in autism.

Contact Us:

Simons Center for the Social Brain
43 Vassar Street
MIT Building 46, Room 6237
Cambridge, MA 02139
Accessibility

· © 2025 Simons Center for the Social Brain · ·

keyboard_arrow_up